nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.39 35-43
基于计算机辅助药物设计筛选中药单体中的法尼醇受体抑制剂
基金项目(Foundation): 内蒙古自治区卫生健康委员会公立医院科研联合基金科技项目(2024GLLH1364)
邮箱(Email): duhongbotcm@126.com;
DOI: 10.13728/j.1673-6427.2025.04.006
摘要:

目的 利用计算机辅助药物设计技术挖掘拮抗细胞毒性胆汁酸的中药单体成分抑制剂。方法 使用三维定量构效关系(3D-QSAR)学习34个已有的法尼醇受体(FXR)抑制剂的药效团特征,建立机器预测模型,搭配药代动力学预测(ADMET)来虚拟筛选13 144个中药单体,得到候选化合物。随后,以分子对接和分子动力学模拟为方法,模拟候选化合物、FXR激动剂鹅去氧胆酸(CDCA)、FXR抑制剂(Z)-Gugglesterone对FXR配体结构域的竞争性结合,以及对转录复合物结构稳定性的影响。结果2 436个中药单体通过了机器预测筛选,具备FXR抑制剂药效团特征;随后选取IC50预测值位于前300名(IC50 < 0.286 nM)的单体进行ADMET预测,最终苦参啶被虚拟筛选为候选化合物,ADMET结果表明,苦参啶具有良好的类药性、口服吸收能力和低毒性。分子对接和动力学模拟结果显示,苦参啶能以更强力的方式和CDCA、(Z)-Gugglesterone竞争FXR的相同结合位点,强力减弱FXR和共激活因子之间的结合。结论 苦参啶有潜力成为强效FXR抑制剂的先导化合物,该研究结合了基于配体和结构的计算机辅助药物设计,为进一步的实验验证提供理论依据。

Abstract:

Objective To discover herbal monomer-based inhibitors of cytotoxic bile acids via computer-aided drug design.Methods 3D quantitative structure-activity relationship (3D-QSAR) modeling was used to analyze the pharmacophore features of 34 known FXR inhibitors and establish machine predictive models.The model achieving optimal predictive performance,combined with pharmacokinetic prediction (ADMET),was utilized to virtually screen 13 144 herbal monomeric compounds for candidate identification.Molecular docking and molecular dynamics simulations were performed to evaluate the competitive binding of candidate compounds,the FXR agonist chenodeoxycholic acid (CDCA),and the FXR inhibitor (Z)-Guggulsterone to the FXR ligand-binding domain(FXR-LBD),as well as their effects on the structural stability of the transcription complex.Results A total of 2 436 herbal monomers passed the pharmacophore model screening,exhibiting FXR inhibitor pharmacophore characteristics.The top 300 monomers with estimated IC50 values (IC50 < 0.286 nM) were subjected to ADMET prediction,leading to the virtual identification of kuraridin as the candidate compound.ADMET results indicated that kuraridin possesses favorable drug-likeness,oral absorption and low toxicity.Molecular docking and dynamics simulation results showed that kuraridin could compete for the same binding site on FXR-LBD with CDCA and (Z)-Gugglesterone in a more potent binding energy,strongly weakening the binding between FXR and co-activators and thus reducing the structural stability of the transcription complex.Conclusion Kuraridin has the potential to be a potent FXR inhibitor and serve as a lead compound.This study combines ligand-based and structure-based computer-aided drug design,providing a theoretical basis for further experimental validation.

参考文献

[1]SUNG H,FERLAY J,SIEGEL R L,et al.Global Cancer Statistics 2020:GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries[J].CA:a Cancer Journal for Clinicians,2021,71(3):209-249.

[2]SHAH S C,GAWRON A J,LI D.Surveillance of gastric intestinal metaplasia[J].The American Journal of Gastroenterology,2020,115(5):641-644.

[3]RUSTGI S D,ZYLBERBERG H M,HUR C,et al.Management of gastric intestinal metaplasia[J].Clin Gastroentero Hepatol,2023,21(9):2178-2182.

[4]LIANG X,DU W,HUANG L,et al.Helicobacter pylori promotes gastric intestinal metaplasia through activation of IRF3-mediated kynurenine pathway[J].Cell Communication and Signaling:CCS,2023,21(1):141.

[5]JONAITIS P,KUPCINSKAS L,KUPCINSKAS J.Molecular alterations in gastric intestinal metaplasia[J].International Journal of Molecular Sciences,2021,22(11):5758.

[6]WANG M,LOU E,XUE Z.The role of bile acid in intestinal metaplasia[J].Frontiers in Physiology,2023,14:1115250.

[7]ZHANG L Y,ZHANG J,LI D,et al.Bile reflux is an independent risk factor for precancerous gastric lesions and gastric cancer:An observational cross-sectional study[J].Journal of Digestive Diseases,2021,22(5):282-290.

[8]朱正望,赵静涵,王琳琳,等.基于数据挖掘探讨中医药治疗反流性食管炎的用药规律[J].现代中药研究与实践,2023,37(6):83-87.

[9]MATSUHISA T,ARAKAWA T,WATANABE T,et al.Relation between bile acid reflux into the stomach and the risk of atrophic gastritis and intestinal metaplasia:a multicenter study of 2283 cases[J].Dig Endose,2013,25(5):519-525.

[10]TATSUGAMI M,ITO M,TANAKA S,et al.Bile acid promotes intestinal metaplasia and gastric carcinogenesis[J].Cancer Epidemiol Biomarkers Prev,2012,21(11):2101-2107.

[11]O?ATE S A,TSAI S Y,TSAI M J,et al.Sequence and characterization of a coactivator for the steroid hormone receptor superfamily[J].Science (New York,N.Y.),1995,270(5240):1354-1357.

[12]GLASS C K,ROSE D W,ROSENFELD M G.Nuclear receptor coactivators[J].Current Opinion in Cell Biology,1997,9(2):222-232.

[13]MODICA S,GADALETA R M,MOSCHETTA A.Deciphering the nuclear bile acid receptor FXR paradigm[J].Nuclear Receptor Signaling,2010,8:e005.

[14]MAKISHIMA M,OKAMOTO A Y,REPA J J,et al.Identification of a nuclear receptor for bile acids[J/OL].Science,1999[2024-10-23].https://www.science.org/doi/10.1126/science.284.5418.1362.

[15]PARKS D J,BLANCHARD S G,BLEDSOE R K,et al.Bile acids:natural ligands for an orphan nuclear receptor[J].Science,1999,284(5418):1365-1368.

[16]XU Y,WATANABE T,TANIGAWA T,et al.Bile acids induce cdx2 expression through the farnesoid x receptor in gastric epithelial cells[J].Journal of Clinical Biochemistry and Nutrition,2010,46(1):81-86.

[17]PARK W I,PARK M J,AN J K,et al.Bile acid regulates c-Jun expression through the orphan nuclear receptor SHP induction in gastric cells[J].Biochemical and Biophysical Research Communications,2008,369(2):437-443.

[18]YU J H,ZHENG J B,QI J,et al.Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway[J].International Journal of Oncology,2019,54(3):879-892.

[19]KOIDE T,KOYANAGI-AOI M,UEHARA K,et al.CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells[J].iScience,2022,25(5):104314.

[20]MELO-FILHO C C,BRAGA R C,ANDRADE C H.3D-QSAR approaches in drug design:perspectives to generate reliable CoMFA models[J].Current Computer-Aided Drug Design,2014,10(2):148-159.

[21]RU J,LI P,WANG J,et al.TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J].Journal of Cheminformatics,2014,6:13.

[22]WU G,ROBERTSON D H,BROOKS C L,et al.Detailed analysis of grid-based molecular docking:A case study of CDOCKER-a CHARMm-based MD docking algorithm[J].Journal of Computational Chemistry,2003,24(13):1549-1562.

[23]WU Y,BROOKS C L.Flexible CDOCKER:Hybrid searching algorithm and scoring function with side chain conformational entropy[J].Journal of Chemical Information and Modeling,2021,61(11):5535-5549.

[24]YASIR M,PARK J,LEE Y,et al.Discovery of GABA aminotransferase inhibitors via molecular docking,molecular dynamic simulation,and biological evaluation[J].International Journal of Molecular Sciences,2023,24(23):16990.

[25]YASIR M,PARK J,HAN E T,et al.Investigating the inhibitory potential of flavonoids against aldose reductase:Insights from molecular docking,dynamics simulations,and gmx_MMPBSA analysis[J].Current Issues in Molecular Biology,2024,46(10):11503-11518.

[26]LEE J,CHENG X,SWAILS J M,et al.CHARMM-GUI input generator for NAMD,GROMACS,AMBER,OpenMM,and CHARMM/OpenMM simulations using the CHARMM36 additive force field[J].Journal of Chemical Theory and Computation,2016,12(1):405-413.

[27]JO S,KIM T,IYER V G,et al.CHARMM-GUI:a web-based graphical user interface for CHARMM[J].Journal of Computational Chemistry,2008,29(11):1859-1865.

[28]CHARLESHAHN.CharlesHahn/DuIvyTools:Confusion,that’s my epitaph[CP/OL].Zenodo,2024[2024-10-15].https://zenodo.org/records/7261543.

[29]VALDéS-TRESANCO M S,VALDéS-TRESANCO M E,VALIENTE P A,et al.gmx_MMPBSA:A new tool to perform end-state free energy calculations with GROMACS[J].Journal of Chemical Theory and Computation,2021,17(10):6281-6291.

[30]LI J.gmxtools[CP/OL].Zenodo,2022[2024-10-15].https://zenodo.org/records/6408973.

[31]LIPINSKI C A,LOMBARDO F,DOMINY B W,et al.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J].Advanced Drug Delivery Reviews,2001,46(1/3):3-26.

[32]HUGHES J D,BLAGG J,PRICE D A,et al.Physiochemical drug properties associated with in vivo toxicological outcomes[J].Bioorganic & Medicinal Chemistry Letters,2008,18(17):4872-4875.

[33]JOHNSON T W,DRESS K R,EDWARDS M.Using the Golden Triangle to optimize clearance and oral absorption[J].Bioorganic & Medicinal Chemistry Letters,2009,19(19):5560-5564.

[34]URIZAR N L,LIVERMAN A B,DODDS D T,et al.A natural product that lowers cholesterol as an antagonist ligand for FXR[J].Science(New York,N.Y.),2002,296(5573):1703-1706.

[35]GAO X,XIONG Y,CHEN H,et al.Mucus adhesion vs.mucus penetration?Screening nanomaterials for nasal inhalation by MD simulation[J].Journal of Controlled Release,2023,353:366-379.

[36]BASSANI D,MORO S.Past,present,and future perspectives on computer-aided drug design methodologies[J].Molecules(Basel,Switzerland),2023,28(9):3906.

基本信息:

DOI:10.13728/j.1673-6427.2025.04.006

中图分类号:TP391.72;R284

引用信息:

[1]黄圣,冯丽娜,林茂炫等.基于计算机辅助药物设计筛选中药单体中的法尼醇受体抑制剂[J].现代中药研究与实践,2025,39(04):35-43.DOI:10.13728/j.1673-6427.2025.04.006.

基金信息:

内蒙古自治区卫生健康委员会公立医院科研联合基金科技项目(2024GLLH1364)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文